Naturwissenschaften
Physik
Grundlagenforschung
vorangehende Seite
end
Physik - Grundlagenforschung ElementarteilchenQuantenforschung
TUM Oszillation statt freier Fall 2017
TUM Unsterbliche Quantenteilchen 2019
Physik - Grundlagenforschung Weitere Informationen
Physik Weitere Informationen
Physik Grundlagenforschung Links
Grundlagenforschung über Elementarteilchen
Naturwissenschaften und Technik
Teilchen- und Quantenphysik
Oszillation statt freier Fall - Quanteninterferenz und die Newtonschen Gesetze

Newton auf den Kopf gestellt - Quanteninterferenz führt zu überraschendem Ergebnis

In der Quantenwelt bewegen sich Objekte nicht immer so, wie wir es im Alltag gewohnt sind. Ein internationales Team von Physikerinnen und Physikern der Universitäten Innsbruck, Paris-Sud und Harvard sowie der Technischen Universität München (TUM) hat nun ein Quantenteilchen beobachtet, das sich nicht gleichmässig durch ein eindimensionales Gas bewegt, sondern in einer Oszillationsbewegung.

Ein vom Baum fallender Apfel soll Isaac Newton zu jener Theorie inspiriert haben, die die Bewegung eines Objekts beschreibt.

Die Newtonschen Gesetze besagen, dass ein sich bewegendes Objekt sich so lange gerade weiterbewegt, bis eine äussere Kraft seine Bahn verändert.

Die Bedeutung dieser Bewegungsgesetze ist allgegenwärtig und reicht vom Fallschirmspringer im Schwerefeld der Erde über das Gefühl der Trägheit in einem beschleunigenden Flugzeug bis zu den Umlaufbahnen der Planeten um die Sonne.

In der Quantenwelt hingegen stösst dieses Alltagsverständnis von Bewegung an Grenzen und manchmal scheitert es sogar. In der aktuellen Ausgabe von "Science" beschreibt ein internationales Team von Physikerinnen und Physikern aus Innsbruck, München, Paris und Cambridge (USA) ein Quantenteilchen, das ein völlig unerwartetes Verhalten zeigt.

In einem sogenannten Quantengas bewegt sich das Teilchen nicht wie der berühmte fallende Apfel, sondern es schwingt hin und her. Grundlage der überraschenden Beobachtung ist die sogenannte Quanteninterferenz, jene Gesetzmässigkeit der Quantenmechanik, wonach Teilchen sich wie Wellen verhalten, die sich aufsummieren oder auslöschen können.

Wellenmechanik Beugung, Brechung, Interferenz, Reflexion
Interferenz von Wasserwellen

Nahe am absoluten Nullpunkt

Um das Teilchen oszillieren zu sehen, kühlte das Forscherteam ein Gas aus Cäsiumatomen fast bis auf den absoluten Nullpunkt ab und sperrte es in sehr dünne "Röhrchen", die mit Laserstrahlen erzeugt wurden. Mit einem Trick brachten sie die Atome zu starken Wechselwirkungen.

Unter diesen extremen Bedingungen bilden die Teilchen eine Art Quantenflüssigkeit, deren Bewegung nur entlang der Röhrchen möglich ist. Das Team beschleunigte dann ein weiteres Atom in einem anderen Spinzustand durch dieses Gas, was in unserer Alltagswelt dem Fall des Apfels vom Baum entspräche.

Die Wissenschaftlerinnen und Wissenschaftler beobachteten jedoch, dass die Quantenwelle des Atoms von den anderen Atomen gestreut und wieder zurückreflektiert wurde. Ergebnis ist eine verblüffende Oszillationsbewegung. Das Experiment zeigt, dass Newtons Gesetze in der Quantenwelt nicht uneingeschränkt gelten.

Kristallines Verhalten von Quantenflüssigkeiten

Die Tatsache, dass Quantenwellen in bestimmte Richtungen reflektiert werden können, ist nicht neu. So ist zum Beispiel bekannt, dass Elektronen im Kristallgitter eines Festkörpers reflektiert werden, was als Bragg-Streuung bezeichnet wird.

Im Innsbrucker Experiment war allerdings kein Kristall vorhanden. Es war vielmehr das atomare Gas selbst, das eine Art versteckte Ordnung darstellte. Die Physik bezeichnet das als Korrelation.

Die nun veröffentlichte Arbeit zeigt, wie diese Korrelationen in Verbindung mit der Wellennatur von Materie die Bewegung von Teilchen in der Quantenwelt bestimmen und zu neuen Phänomenen führen, die auf den ersten Blick unserer Intuition widersprechen.

Grundlegende Mechanismen in elektronischen Bauteilen verstehen

"Die Eigentümlichkeit der Quantenmechanik zu verstehen, ist für eine ganze Reihe von Anwendungen interessant ", sagt Michael Knap, Professor für Kollektive Quantendynamik an der TU München. "Zum Beispiel könnten diese Ergebnisse dabei helfen, grundlegende Mechanismen in elektronischen Bauteilen oder sogar Transportprozesse in komplexen biologischen Systemen besser zu verstehen und damit technisch nutzbar zu machen."

Die Forschung wurde vom europäischen Wissenschaftsrat (ERC), vom österreichischen Wissenschaftsfonds (FWF), von der National Science Foundation (NSF) und dem Air Force Office of Scientific Research (AFOSP) der USA, der Alexander von Humboldt Gesellschaft, dem Max-Planck-Institut für Quantenoptik und dem TUM Institute for Advanced Study finanziell unterstützt. Neben dem Physik Department der TU München waren das Zentrum für Quantenphysik der Universität Innsbruck, das Laboratoire de Physique Théorique et Modèles Statistiques der Universität Paris-Sud und das Physik-Department der Harvard Universität (Cambridge, Massachusetts, USA) an der Forschungsarbeit beteiligt.

Originalpublikation:

Bloch oscillations in the absence of a lattice.
Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl.
Science, 02.06.2017 – DOI:10.1126/science.aah6616

Quelle: Text Technische Universität München, 1. Juni 2017

nach oben

Unsterbliche Quantenteilchen

Oszillation von Quasiteilchen: Der Zyklus von Zerfall und Wiedergeburt

In der makroskopischen Welt ist der Zerfall unerbittlich: Zerbrochene Gegenstände fügen sich nicht von selbst wieder zusammen.

In der Quantenwelt gelten jedoch andere Gesetze: Neue Forschungen zeigen, dass sogenannte Quasiteilchen zerfallen und sich wieder reorganisieren können und damit gewissermassen unsterblich sind.

Gute Aussichten für die Entwicklung haltbarer Datenspeicher.

Nichts hält ewig, sagt der Volksmund. Die Gesetze der Physik bestätigen dies: Alle Prozesse auf unserem Planeten vergrössern die Entropie, also die molekulare Unordnung. Ein zerbrochenes Glas beispielsweise würde sich niemals von selbst wieder zusammenfügen.

Was in der Alltagswelt undenkbar erscheint, ist auf mikroskopischer Ebene möglich, das haben Theoretische Physiker der Technischen Universität München (TUM) und des Max-Planck Instituts für die Physik komplexer Systeme herausgefunden.

"Bisher ist man davon ausgegangen, dass Quasiteilchen in wechselwirkenden Quantensystemen nach einer gewissen Zeit zerfallen. Jetzt wissen wir, dass das Gegenteil der Fall ist: Starke Wechselwirkungen können den Zerfall sogar komplett stoppen", erklärt Frank Pollmann, Professor für Theoretische Festkörperphysik der TUM. Ein Beispiel für solche Quasiteilchen sind kollektive Gitterschwingungen in Kristallen, sogenannte Phononen.

Den Begriff des Quasiteilchens prägte der Physiker und Nobelpreisträger Lew Dawidowitsch Landau. Er beschrieb damit kollektive Zustände von vielen Teilchen, beziehungsweise deren Wechselwirkungen durch elektrische oder magnetische Kräfte. Durch diese Interaktion verhalten sich mehrere Teilchen wie ein einzelnes.

Numerische Methoden eröffnen neue Perspektiven

"Welche Prozesse das Schicksal dieser Quasiteilchen in wechselwirkenden Systemen im Detail beeinflussen, war bisher allerdings nicht bekannt", berichtet Pollmann. "Erst jetzt verfügen wir über numerische Methoden, mit denen wir komplexe Wechselwirkungen berechnen können und ausserdem über Computer, die leistungsfähig genug sind, diese Gleichungen zu lösen."

"Das Ergebnis der aufwendigen Simulation: Quasiteilchen zerfallen zwar, aus den Bruchstücken entstehen aber neue, identische Teilchengebilde", sagt Erstautor Ruben Verresen. "Wenn dieser Zerfall sehr schnell abläuft, kommt es nach einer gewissen Zeit zu einer Umkehrung der Reaktion, und die Trümmer finden sich wieder zusammen. Dieser Prozess kann sich unendlich wiederholen, es entsteht eine anhaltende Schwingung zwischen Zerfall und Wiedergeburt."

Diese Schwingung ist physikalisch betrachtet eine Welle, die in Materie umgewandelt wird – was gemäss dem quantenmechanischen Welle-Teilchen-Dualismus möglich ist. Damit verstossen die unsterblichen Quasiteilchen auch nicht gegen den zweiten Hauptsatz der Thermodynamik. Ihre Entropie bleibt konstant, der Zerfall ist gestoppt.

Der Realitäts-Check

Die Entdeckung erklärt auch Phänomene, die bisher rätselhaft waren. Experimentalphysiker hatten gemessen, dass die magnetische Verbindung Ba3CoSB2O9 erstaunlich stabil ist. Magnetische Quasiteilchen, die Magnonen, sind dafür verantwortlich. Andere Quasiteilchen, die Rotonen, sorgen dafür, dass Helium, an der Erdoberfläche ein Gas, am absoluten Nullpunkt eine Flüssigkeit wird, die widerstandslos fliessen kann.

"Unsere Arbeit ist reine Grundlagenforschung", betont Pollmann. Es sei aber gut möglich, dass die Ergebnisse eines Tages auch Anwendungen erlauben – beispielsweise den Bau langlebiger Datenspeicher für zukünftige Quantencomputer.

Originalpublikation:

Ruben Verresen, Roderich Moessner & Frank Pollmann Avoided quasiparticle decay from strong quantum interactions nature physics, 27. Mai 2019 – DOI: 10.1038/s41567-019-0535-3
Mehr Informationen:

Mehr Informationen:

Die Forschungsarbeiten wurden gefördert durch das European Research Council (ERC) und die Deutsche Forschungsgesellschaft DFG im Rahmen des SFB 1143, der Research Unit FOR1807 sowie durch den Exzellenzcluster Nanosystems Initiative Munich (NIM). Die Arbeiten werden im neuen Exzellenzcluster Munich Center for Quantum Science and Technology (MCQST) fortgeführt.

Quelle: Text Technische Universität München, 14. Juni 2019

nach oben

Einstein und seine Theorien
Einsteins Äquivalenzprinzip Freier Fall
Gravitation Schwerkräfte oder Massenanziehungskräfte
CERN Teilchenbeschleuniger LHC
Teilchen- und Quantenphysik: Grundlagenforschung

nach oben

Links
Externe Links
Technische Universität München
end
vorangehende Seite