Erstmalige 3-D-Darstellung von internen magnetischen Strukturen Magnete werden in Motoren eingesetzt, in der Energieproduktion und in der Datenspeicherung. Ein tieferes Verständnis der grundlegenden Eigenschaften magnetischer Materialien könnte daher einen grossen Einfluss auf unsere Technologie und damit unseren Alltag haben. Eine Studie von Forschenden am Paul Scherrer Institut PSI, der ETH Zürich und der Universität Glasgow hat das Potenzial, zu einem besseren Verständnis von Magneten zu führen: Die Forschenden haben zum ersten Mal die Richtungen der Magnetisierung in einem dickeren Material als je zuvor in 3-D sichtbar gemacht - bis zu Details, die ein Zehntausendstel eines Millimeters klein sind (100 Nanometer). Sie konnten die dreidimensionale Anordnung der magnetischen Momente abbilden. Diese kann man sich als winzige magnetische Kompassnadeln vorstellen, die in ihrer Gesamtheit die magnetische Struktur des Materials bilden. Den Forschenden gelang ihre Visualisierung im Inneren eines Gadolinium-Kobalt-Magneten mit einer am PSI entwickelten, neuen experimentellen Bildgebungstechnik: der Magnettomografie mittels harter Röntgenstrahlung. Das Ergebnis offenbarte faszinierende Mustergeflechte und innerhalb dieser auch sogenannte Bloch-Punkte. An einem Bloch-Punkt ändern die magnetischen Nadeln schlagartig ihre Richtung. Bloch-Punkte wurden im Jahr 1965 theoretisch vorhergesagt, doch erst mit diesen neuen Messungen gelang die direkte Beobachtung. Die Forschenden veröffentlichten ihre Studie in der renommierten wissenschaftlichen Zeitschrift Nature.
Diese kleinen Nadeln reagieren auf einander und sind daher nicht beliebig angeordnet, sondern bilden bestimmte Muster, die das gesamte magnetische Objekt durchziehen. Grundlegende magnetische Strukturen und erstmals Bloch-Punkte sichtbar gemacht Die Forschenden erkannten schnell, dass das magnetische Muster aus grundlegenden magnetischen Strukturen besteht, die ineinander verschlungen sind: Sie erkannten magnetische Domänen, also Regionen mit gleicher magnetischer Ausrichtung, und Domänenwände, die zwei solcher Domänen voneinander trennen. Die Forschenden beobachteten zudem magnetische Wirbel, deren Form derjenigen eines Tornados gleicht. Zusammengesetzt bildeten all diese Strukturen ein einzigartiges, vielschichtiges Muster. "Diese grundlegenden, bekannten Strukturen zu sehen, wie sie sich zu einem komplexen dreidimensionalen Netzwerk zusammenfügen, war wirklich schön und eindrucksvoll", sagt Claire Donnelly, Erstautorin der Studie. Eine besondere Art Struktur stach dabei heraus und wertete die Forschungsergebnisse zusätzlich auf: ein Paar magnetischer Singularitäten, sogenannte Bloch-Punkte. Bloch-Punkte enthalten einen unendlich kleinen Bereich, in dem die "magnetischen Kompassnadeln" ihre Richtung schlagartig ändern. Singularitäten verschiedenster Art faszinieren Forschende in allen möglichen Wissenschaftsbereichen; bekannte Beispiele sind die Schwarzen Löcher im Weltall. "Bei den Ferromagneten kann die Magnetisierung üblicherweise als stetig angesehen werden, das heisst, auf der Nanometerskala gibt es keine plötzlichen Änderungen. An diesen Singularitäten dagegen gilt genau das nicht mehr", sagt Sebastian Gliga von der Universität Glasgow, der derzeit als Gastwissenschaftler am PSI ist. Bloch-Punkte stellen Monopole der Magnetisierung dar und obwohl sie schon vor über 60 Jahren vorhergesagt wurden, konnten sie bis zu dieser Studie nie direkt beobachtet werden. Röntgen-Magnettomografie: Eine 3-D-Abbildung mit Auflösung auf der Nanometer-Skala Die in dieser Studie angewandte, experimentelle Technik der Röntgen-Magnettomografie basiert auf einem Grundprinzip der Computertomografie (CT). Ähnlich wie bei medizinischen CT-Scans werden viele Röntgenbilder der Probe nacheinander und jeweils aus leicht unterschiedlicher Richtung aufgenommen. Die Messungen dieser Studie wurden an der cSAXS-Strahllinie der Synchrotron-Lichtquelle Schweiz SLS am PSI durchgeführt. Eine hochmoderne Messeinheit zur Röntgen-Nanotomografie des OMNY-Projekts ermöglichte zusammen mit einer kürzlich entwickelten Bildgebungstechnik namens Ptychografie die Experimente. Aus den so gesammelten Daten erstellten die Forschenden mittels Computerberechnungen und einem am PSI entwickelten, neuartigen Rekonstruktionsalgorithmus eine 3-D-Landkarte der Magnetisierung. Die Forschenden nutzten sogenannte "harte" Röntgenstrahlen an der SLS des PSI. Im Vergleich zu "weichen" Röntgenstrahlen haben harte Röntgenstrahlen eine höhere Energie. "Die weiche Röntgenstrahlung mit ihrer niedrigeren Energie wurde schon zuvor sehr erfolgreich eingesetzt, um ähnliche Landkarten der magnetischen Momente zu erzielen", erklärt Claire Donnelly. "Aber weiche Röntgenstrahlung dringt kaum in solche Proben ein, daher lässt sich mit ihr nur die Magnetisierung eines Dünnfilms oder an der Oberfläche eines Objekts abbilden." Um wirklich ins Innere ihres Magneten einzutauchen, wählten die PSI-Forschenden daher harte Röntgenstrahlung. Den Preis der deutlich geringeren Signalstärke, die die harte Röntgenstrahlung mit sich bringt, nahmen sie dabei in Kauf. "Viele Leute haben vorher nicht geglaubt, dass uns diese magnetische 3-D-Bildgebung mit harten Röntgenstrahlen gelingen würde", erinnert sich Laura Heyderman. Massgeschneiderte Magnete für die Zukunft Die Forschenden sehen ihre Leistung als Beitrag zu einem tieferen Verständnis der grundlegenden Eigenschaften magnetischer Materialien. Darüber hinaus könnte die neue Methode der Forschenden, mit der sich ins Innere von Magneten blicken lässt, einen weitreichenden Einfluss auf viele der heutigen Technologien haben: Magnete finden sich in Motoren, in der Energieproduktion und in der Datenspeicherung. Womöglich lassen sich dank der nun vorgestellten Methode eines Tages bessere, massgeschneiderte Magnete erschaffen, was wiederum viele alltägliche Anwendungen weiter verbessern würde. Originalveröffentlichung Three-dimensional magnetization structures revealed with X-ray vector nanotomography Über das PSI Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.
|