Naturwissenschaften
Weltraum - Raumfahrt
European Space Agency ESA
Kometen
vorangehende Seite
end
Weltraum Kometen
Woraus «Chury» besteht 2015
Kometen: weiche Schale, harter Kern? 2015
Weltraum Weitere Informationen
RAOnline: Weltraum - Astronomie
Weitere Informationen
Naturwissenschaften und Technik Weltraum
ESA-Kometensonde «Rosetta»
Die Elemente, aus denen der Komet «Chury besteht

Glücksfall zeigt, aus welchen Elementen «Chury» besteht

Der Komet Churyumov-Gerasimenko wird von Partikeln des Sonnenwinds getroffen, welche Atome aus seiner Oberfläche lösen. Diese wurden nun vom Massenspektrometer des ROSINA-Messgeräts der Universität Bern erfasst und analysiert. Die Ergebnisse zeigen, dass «Chury» mit den ältesten bekannten Meteoriten unseres Sonnensystems verwandt ist.

Es war einer jener seltenen Glücksmomente in der Forschung: Eigentlich erfassen die beiden Massenspektrometer des Instruments ROSINA auf der Rosetta-Sonde ausschliesslich flüchtige Elemente aus der Gashülle des Kometen «Chury». Unerwartet tauchten bei den Ergebnissen aber auch feste Elemente wie Natrium auf, die nicht aus der Hülle stammten konnten.

Das ROSINA-Team um Peter Wurz vom Physikalischen Institut und Center for Space and Habitability (CSH) der Universität Bern vermutete, dass diese von der Kometenoberfläche stammten. Es wurde angenommen, dass sie vom Sonnenwind, einem Strom von geladenen Teilchen der Sonne, herausgeschlagen wurden und ROSINA so «ins Netz» gingen.

Um dies herauszufinden, gingen die Forschenden auf die Suche nach weiteren festen Elementen, als sich die Rosetta-Sonde in einer Entfernung von nur 10 Kilometern zu «Chury» befand - und wurden fündig. Damit konnte erstmals belegt werden, dass der Sonnenwind die Oberfläche des Kometen erreicht und dort Atome herauslöst. Im Gegensatz dazu kann die Erdoberfläche vom Sonnenwind nicht beschossen werden: Die Erdatmosphäre und das Magnetfeld der Erde schirmen sie vor den geladenen Teilchen ab. Diese werden höchstens am Himmel sichtbar, etwa als Polarlicht.

Auch auf die Kometenoberfläche wirkt der Sonnenwind nur noch kurz ein: Je näher «Chury» zur Sonne kommt, desto mehr verdampft von seinem Eis, und umso stärker wird seine Ausgasung. Diese wird den Sonnenwind abbremsen und ablenken, so dass er nicht mehr auf die Oberfläche gelangt. Die von ROSINA vorgenommenen Messungen von Elementen aus der Oberfläche wären zu einem späteren Zeitpunkt also nicht mehr möglich gewesen.

Die internationale Forschergruppe konnte nun dieses Zeitfenster mit Einwirkung des Sonnenwinds nutzen und erstmals Elemente aus der gesamten Kometenoberfläche bestimmen. Die Forschenden sprechen von einem grossen Glücksfall: «Wir müssen immer mit solch unerwarteten Ergebnissen rechnen, deshalb bleiben unsere Instrumente die ganze Zeit über eingeschaltet», sagt Kathrin Altwegg, Ko-Autorin der in «Astronomy&Astrophysics» erschienenen Studie und Projektverantwortliche von ROSINA.

Verwandt mit Chondriten

Aufgefangen wurden die Oberflächen-Atome aus einer Entfernung von rund 10 Kilometern. Dabei zeigte sich, dass auf der «Sommerseite» des Kometen, die zur Zeit der Beobachtungen meistens von der Sonne beschienen wurde, die Ausgasung von Wasser viel stärker ist als auf der «Winterseite», die grösstenteils im Schatten lag. Auf der Winterseite konnte somit der Sonnenwind ungehindert auftreffen, weshalb von dieser Seite viel mehr dieser losgelösten Oberflächen-Atome aufgefangen werden konnten.

Aus allen empfangenen Atomen konnten die Forschenden das durchschnittliche Auftreten von Elementen auf der gesamten Kometenoberfläche bestimmen. So findet sich dort Natrium, Silicium, Kalium, Kalzium und Magnesium - Elemente, die aus der Meteoritenforschung gut bekannt sind. Die Häufigkeit dieser Atome vom Kometen entsprechen dabei in etwa den Häufigkeiten in Chondriten, der ältesten Klasse von Meteoriten. «Eine Verwandtschaft zwischen Chury und solchen Meteoriten ist deshalb naheliegend», sagt Peter Wurz.

Angaben zur Publikation

Peter Wurz, Martin Rubin, Kathrin Altwegg, Hans Balsiger, Jean-Jacques Berthelier, André Bieler, Ursina Calmonte, Johan De Keyser, Björn Fiethe, Stephen A. Fuselier, André Galli, Sébastien Gasc, Tamas I. Gombosi, Annette Jäckel, Léna Le Roy, Urs A. Mall, Henri Rème, Valeriy Tenishev, and Chia-Yu Tzou: Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, Astronomy & Astrophysics, 29.07.2015, in press.

Quelle: Text Universität Bern, 29. Juli 2015

Die Raummission «Rosetta»

Rosetta ist eine Mission der ESA mit Beiträgen von ihren Mitgliedsstaaten und der NASA. Rosettas Lander Philae wird von einem Konsortium unter der Leitung von DLR, MPS, CNES und ASI beigesteuert.

VIRTIS (Visible, InfraRed and Thermal Imaging Spectrometer) ist das visuell-infrarote Spektrometer an Bord der ESA-Sonde Rosetta. Es wird Informationen zur Zusammensetzung des Kometenkerns liefern und die Verteilung des Materials an der Oberfläche sowie der Gase und Moleküle in der Koma kartieren. VIRTIS wurde von einem Konsortium unter der wissenschaftlichen Leitung des Istituto di Astrofisica e Planetologia Spaziali of INAF in Rom (Italien) gebaut, das auch den wissenschaftlichen Betrieb leitet. Zum Konsortium gehören das Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique of the Observatoire in Paris (Frankreich) und das Institut für Planetenforschung des DLR (Deutschland). Die Entwicklung des Instruments wurde gefördert und koordiniert durch die nationalen Raumfahrtagenturen: Agenzia Spaziale Italiana (ASI, Italien), Centre National d'Études Spatiales (CNES, Frankreich) und des Deutschen Zentrum für Luft- und Raumfahrt (DLR, Deutschland). Die Unterstützung durch das Rosetta Science Operations Centre und das Rosetta Mission Operations Centre wird dankend gewürdigt.

nach oben

Kometen: weiche Schale, harter Kern?

Komet Churyumov-Gerasimenko gibt neue Rätsel auf: Bodenmessungen des Landemoduls «Philae» deuten darauf hin, dass sich der Komet verändert hat. Forschende waren bislang davon ausgegangen, dass er seit seiner Entstehung vor rund 4,5 Milliarden Jahren praktisch im gleichen Zustand geblieben war. Die Resultate der Studie, an der auch Forschende der Universität Bern beteiligt sind, wurden im Magazin «Science» publiziert.

Hart wie vereister Schnee statt lose und weich wie Staub: Offensichtlich ist das Material unter der Oberfläche von Komet Churyumov-Gerasimenko weitaus härter als es viele Fachleute erwarteten - dies ergaben zumindest Messungen des Kometen-Landers «Philae». Karsten Seiferlin, Planetologe und Projektmanager am Physikalischen Institut der Universität Bern, war direkt an der Entdeckung beteiligt und ist Co-Autor eines «Science»-Artikels, in dem die Messergebnisse publiziert wurden.

«Die Verfestigung des Materials deutet auf Prozesse hin, die den Kometen nachhaltig verändert haben oder immer noch verändern», sagt er. Für die Rosetta-Mission sei diese Erkenntnis sehr bedeutsam: «Man nahm ursprünglich an, dass Kometen sich seit ihrer Entstehung praktisch nicht verändert haben und somit Aufschluss über die Bildung von Planeten und Kometen geben würden.» Die jüngsten Resultate der «Rosetta»-Mission zeigten nun aber, dass man die Möglichkeit von Veränderungen berücksichtigen müsse.

Ein erster Hinweis auf eine harte Schicht nahe der Oberfläche ergab sich laut Seiferlin schon aus dem überraschend weiten Sprung, den Philae bei seiner dramatischen Landung im November 2014 nach dem ersten Kontakt mit dem Kometen vollzog. Einen direkten Beweis für die harte Schicht lieferte dann das Instrument MUPUS, das Seiferlin von 1994 bis 2002 als Projektleiter betreute - damals noch im Institut für Planetologie an der Universität Münster. Das eigentliche Ziel des Instruments war es, mittels eines Hammermechanismus einen etwa 35 cm langen und mit Temperatursensoren ausgestatteten Stab (MUPUS PEN) in den Boden zu schlagen, um dort die Temperaturen unter der Oberfläche zu messen.

Philaes Hammer kam nicht durch

Dabei lief indes nicht alles glatt: Zwar arbeitete das Instrument zunächst fehlerfrei und genau wie geplant. Es setzte die Temperatursonde in etwa 60 cm Abstand von Philae aus, wo danach der Hammer mit seiner Arbeit begann und versuchte, den Messstab in den Kometenboden zu schlagen. Da aber kein Fortschritt erkennbar war, wurde die Hammerleistung automatisch bis zum Maximum erhöht. Obwohl die stärkste Hammerstufe auf der Erde ausreicht, um zum Beispiel Gasbeton-Steine oder sehr festen Schnee zu knacken, scheiterte das geplante Eindringen auf Churyumov-Gerasimenko letztlich an der unerwarteten Härte des Kometenbodens.

Die Gründe für die beobachtete Härte sind laut Karsten Seiferlin unklar. Man könne sowohl an relativ kurz zurückliegende Vorgänge denken, die durch die in Sonnennähe starke Strahlung angetrieben werden, als auch an weit zurückreichende Prozesse, die mit der Entstehung und Entwicklung von Churyumov-Gerasimenko zusammenhängen. «Der Komet hatte 4,5 Milliarden Jahre Zeit, sich zu verändern.»

Ein Komet mit Amnesie

Nun sei es besonders wichtig, diese Veränderungen zu verstehen, da die ESA-Raumsonde Rosetta anscheinend um einen Kometen kreise, der eben nicht mehr - wie anfangs erwartet - seit Jahrmilliarden unverändert geblieben ist. Seiferlin: «Der erhoffte Zeuge der Entstehung des Sonnensystems leidet gewissermassen an Amnesie.» Die getroffenen Aussagen müssen demnach entsprechend vorsichtig bewertet werden. «Wie fast jedes Mal, wenn Raumsonden einen bis dahin unbekannten Körper untersuchen, kam alles anders als gedacht. Die Natur überrascht uns immer wieder und lässt uns mit mehr Fragen zurück, als wir vorher hatten.»

Die von MUPUS auf Philae beobachteten Veränderungen betreffen aber vermutlich nur die sogenannten flüchtigen Bestandteile wie Wassereis, und nicht die Mineralien und Stoffe, die in einer anderen, aktuellen Studie der Universität Bern beschrieben wurden.

Angaben zur Publikation

T. Spohn, J. Knollenberg, A.J. Ball, M. Banaszkiewicz, J. Benkhoff, M. Grott, J. Grygorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K.J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin: Thermal and Mechanical Properties of the Near-Surface Layers of comet 67P/Churyumov-Gerasimenko, Science, 31.07.2015, in press

Quelle: Text Universität Bern, 30. Juli 2015

nach oben

ESA Kometen: Rosetta-Mission
ESA Kometen: Rosetta 26.02.2004
Asteroiden: (2867) Steins
ESA Kometen: Rosetta 04.03.2005
Planeten unseres Sonnensystems
Sonnensystem 8 Planeten
NASA Deep Impact
NASA Stardust
Asteroiden
Kometen
Links
Externe Links
deutsch deutsch
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max-Planck-Gesellschaft
DLR Rosetta Universität Bern ROSINA
english english
ESA Portal
ESA Rosetta Mission
top
vorangehende Seite